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Is the Weis-Fogh principle exploitable in turbomachinery? 
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(Received 26 July 1978 and in revised form 22 January 1979) 

Weis-Fogh discovered a remarkable new principle of aerodynamic lift. Hovering 
wasps exploit the principle and fly with an aerodynamic performance superior in some 
respects to  anything previously known. I n  this paper we address the question of 
whether the Weis-Fogh effect can be exploited in turbomachinery. We think the 
answer is yes. 

Normal turbomachinery design is based on the analysis of isolated cascades of 
blades with steady entry and exit flows. The interactions between adjacent cascades 
and nonuniformities of the flow are usually regarded as problems which have to be 
minimized. Unsteadiness gives rise to noise. In  this paper we take the opposite view 
and examine a novel type of turbomachinery stage that depends on the interaction 
between rotor and stator for its normal operation. The stage exploits the Weis-Fogh 
principle and has the unusual property that when started from rest it generates a 
pressure rise without shedding any vorticity into the fluid. We argue that there may 
be a performance advantage for stages of this new type. 

Experiments were done to check the validity of the theoretical model and these are 
described. The results seem to show that under certain circumstances a strong rotor- 
stator interaction can result in an improved stage performance, and we suggest that 
this improvement may be due to the Weis-Fogh effect. 

1. Introduction 
An aerofoil accelerating from rest initially generates no lift. The lift will arise only as 

a circulation develops around the aerofoil as vorticity is shed from the trailing edge. 
The shed vorticity affects the flow a t  the trailing edge in such a way as to delay further 
shedding, and hence the development of full lift takes time. A hovering animal that 
uses an oscillating wing on which circulation of different sign must be developed for 
succeeding beats will have its performance impeded by this delay, in that the lift 
impulse generated by each wing beat will be reduced. I n  his studies of animal hovering 
motions, Weis-Fogh (1 973) observed that one small insect, the chalcid wasp Encarsia 
formosa, overcomes this problem by a remarkable interaction of the two wings; each 
wing acts as the starting vortex for the other. The heart of the process rests in an 
essential separation of two wings that are initially in contact. Lighthill (1973) has given 
a mathematical analysis of the Weis-Fogh effect and shown how the performance of 
the wing system is governed by parameters quite different from those determining the 
forces on conventionally operating isolated aerofoils. 

While considering whether this interaction process might have any application in 
turbomachinery, it is clear that the provision for rapid changes in blade circulations 
might be particularly relevant to tangential flow fans (see,e.g., Cloester 1959). There the 
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blade circulation must change twice per revolution, and this is in practice achieved by 
interaction with the surrounding duct structure. 

We think that the operation of these fans has aspects with distinct similarity to the 
Weis-Fogh principle, and we shall pursue that analogy in due course. But first we 
need a much simpler flow geometry on which the likely magnitude of the effect can be 
quantified and checked experimentally. 

The main reason that we are seeking an application of the Weis-Fogh effect for 
turbomachinery is that we expect a performance advantage over conventional sys- 
tems. We base our expectation solely on the known performance of insects exploiting 
this principle. The Encarsia.formosa’s mean lift coefficient whilst airborne, calculated 
on the assumptions of normal hovering, is 3 (see Weis-Fogh 1973), an exceptionally 
high value. The basic process includes a mechanism which delays the onset of stall and 
allows higher circulations to exist. If this can be exploited on turbomachinery blades 
there could result a significant practical advantage over conventional machinery 
designed on the aerodynamic principles of non-interacting elements. 

The model of the insect’s wing motions studied by Lighthill is based on aerofoils 
rotating about a span-wise axis. Though this may well have future relevance to  
tangential flow fans we are seeking first a scheme that might be used for axial flow 
machinery in which rotating cascades of blades move parallel to adjacent static 
cascades. For that we choose a new model in which aerofoils, whose relative motion is 
purely translational, interact as a result of their proximity during part of the motion. 

Of course the geometry has t>o be simplified for an exact analysis to be tractable, and 
a t  least initially all viscous effects must be ignored. The same was true for Lighthill’s 
successful modelling of the Weis-Fogh insect motion. Since we might expect viscous 
terms to be even smaller a t  the much higher Reynolds number thatwill be of engineer- 
ing interest in real machines, we anticipate that our model will be representative of the 
real flow. Furthermore, as Lighthill (1973) points out, in this radically unconventional 
method of producing lift viscous terms can actually be beneficial and augment the 
lifting ability of the wings. 

Also for the sake of simplicity we begin by examining in isolation a single pair of 
interacting aerofoils. This is the fundamental and simplest geometry in which the 
principle can be demonstrated. Cascade results will follow later. Isolated aerofoil 
analysis furnishes the same canonical problem for conventional cascades. The essence 
of our application of the Weis-Fogh principle is that the rotor and stator blades should 
pass close enough that they are effectively in contact for a finite part of the blade to 
blade period. The circulation on an individual rotor blade after it has left contact with 
the stator, and which determines its lift, is set by the potential flow about the com- 
posite deforming two-blade body at the instant prior to separation. We determine 
this flow by conformal transformation. 

Our analytical results confirm that the Weis-Fogh principle is applicable to geo- 
metrical configurations suitable for turbomachinery applications. We show that the 
force on blades operating a t  similar angles of incidence isof thesame order regardlessof 
whether they are operating in the conventional or in the Weis-Fogh mode. But we expect 
that, just in the same manner as that practised by the chalcid wasp, much higher stall- 
free incidences are made possible by the strong unsteady blade to blade interactions 
of the Weis-Fogh effect. It is in that area that we would expect, significant advantage 
over conventional machines. Our experiment tends, we think, to confirm this view. 
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FIQURE 1. The physical plane. The rotor AB moves with a velocity v parallel to the fixed stator 
EF. The blades are in an external flow with velocity components ( U ,  F) at infinity, and the total 
circulation on the system is C .  

2. The flow around interacting aerofoils 
Our model consists of a rotor blade A B  and a stator blade EF,  each represented by a 

flat plate (figure 1) .  The stator is aligned parallel to the direction of motion of the rotor, 
and the trailing edge of the rotor maintains contact with the upper surface of the 
stator while the blades pass. 

We chose this model because it represents a situation where the Weis-Fogh effect 
might operate in a geometry not unrepresentative of an axial compressor stage. Also 
it is possible to calculate analytically full details of the flow field using potential flow 
theory, at least for that part of the motion when the blades are in contact. The problem 
is unusual in that the boundary is deforming, and eventually splitting into two dis- 
connected bodies. A potential flow, however, does not depend on the history of the 
boundaries, but only on the instantaneous boundary velocities. Thus rather than 
analysing the problem with a moving physical rotor, we may consider the equivalent 
problem where AB in figure 1 is a fixed boundary on which a normal velocity is pre- 
scribed. This then allows us to transform the boundary by conformal mapping into 
something more easily handled. The flow region in figure 1 may be considered to be the 
exterior of a polygon, and this may be transformed into the exterior of the unit circle 
(Jeffreys & Jeffreys 1956, $13-094) via the conformal mapping 

where a is the angle of incidence of the rotor, K is a scaling constant, and &, is the 
mapping of B into the c-plane,etc. Note that, since the polygon in the z-plane is degen- 
erate, the trailing edge of the rotor ( A )  corresponds to two vertices, which transform 
distinctly into Cu, on EAB and Q, on BAF (figure 2). 
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FIGURE 2. The conformal transformation. (a) The z-plane. The phpical boundary may be thought 
of as a degenerate polygon. (b)  The 5-plane. The boundary in the z plme may be transformed into 
the unit circle in the c-plrtne via equation (2.1). 

This transformation enables us to find a complex potential, and hence full details 
of the flow field, but first it is relevant to consider the geometrical details of the trans- 
formation. 

We want z (6 )  to be single valued, and this requires that the coefficient of C-l in the 
expansion of equation (2.1) in negative powers of 5 be zero. This gives the following 
interrelation between the values of y at the transformed vertices: 

We are free to prescribe any value on the unit circle for one of the transformed 
vertices, and here we take 5, = - I .  

Other values correspond to rotations of the boundary in the c-plane. Then we may 
take any values consistent with equation (2.2) for the other transformed vertices, in 
sequence round the unit circle, and use them to integrate equation (2.1) numerically to  
obtain the various lengths in the physical plane. 

As the rotor moves across the stator, the transformed vertices move around the unit 
circle in a manner which is hard to establish by anything other than numerical methods. 

The complex potential may be considered as the linear superposition of three com- 
ponents; the flow generated by the relative motion of the blades, that caused by an 
external stream, and that caused by a non-zero total circulation on the system. All 
three may be evaluated, and we look first at  the component generated by the relative 
motion of the blades with zero total circulation and no flow at a large distance. 

The motion of the rotor is represented by a normal velocity boundary condition in 
the physical plane, and, since the normal velocity is equal to the derivative along the 
boundary of the stream function $, we may express the boundary conditions as 

- v sin 01 z e+ on the rotor 

@ = (  0 on the stator 

provided that we take the trailing edge A of the rotor at  z = 0. 
The boundary conditions may be transferred into the c-plane, where they become 

-~sinae-~~z(eiv)  for 

@ = (  0 otherwise, 
va, > 7 > vaz, 

where 5 = eiq on the unit circle. The corresponding complex potential is 
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where the integration is to be taken clockwise round the unit circle, and the trailing 
edge of the rotor is taken a t  the origin in the physical plane ( z ( < ~ , )  = 0). 

This is the complex potential for the flow generated by the relative motion of the 
rotor and stator. The total complex potential will include contributions representing 
an external flow and a non-zero total circulation. These are easily calculated, since the 
boundary in the <-plane is a circle. An external stream with velocity ( U ,  V )  at a large 
distance in the z-plane gives rise to a complex potential 

we(<) = ( U +  i V )  <K+ ( U  - i V )  C-lE, (2.6) 

where the overbar denotes the complex conjugate, and a total circulation C adds 

Thus the complex potential is known for any flow condition. 
If in the z-plane an external stream is applied with the same velocity as the rotor, 

so ( U ,  V )  = (v, 0) and C = 0, it is clear that a uniform flow parallel to the stator will 
result. Thus 

<K + <-1R - - d<' = Z .  

Hence equation (2.5) may be written in the following form which is more convenient 
for computation: 

w(<) = v(z-<K--<-lE). (2.9) 

The complex potential with external flow ( U ,  V )  and circulation C is then 

WI' = w+oe+wc  

(2.10) 

We now have full information on the flow around our simple two blade model 
immersed in any external flow, for the period while the blades are in contact. This 
will enable us to calculate the forces on the blades, and see how the interaction will 
affect the blade circulations. We can then use the results to estimate the performance 
of cascades of interacting blades, treating each interaction between two blades in 
isolation as a first approximation, and compare with the performance of a conven- 
tional stage. 

The complex potential in equation (2.10) may be used with the conformal transfor- 
mation [equations (2.1) and (2.2)] to calculate the streamlines for any geometry and 
flow condition. Since the conformal transformation is written in terms of < it is natural 
to start in the <-plane. The boundary in the <-plane is a circle, and therefore polar 
coordinates with the origin at  the centre of the circle were chosen. One hundred values 
of each co-ordinate were taken to cover an annular region from the boundary to a 
circle six times the radius of the boundary, and figure 3(a )  shows the co-ordinate 
system for every fifth value taken. 

Suitable positions for the transformed vertices on the unit circle were then chosen to 
give a rotor of equal length to the stator, and inclined at 45O to it, with the two blades 
about to separate ( A  and F coincident in figure 1) .  Equation (2.1) wasintegratedround 
the unit circle in the f;-plane to give the value of z corresponding to each of the one 

iC 
2n 

= wz + ( U  - v +  i V )  <K + ( U  - 21 - i V )  <-1E + -log 5. 
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FIGURE 3. (a) The co-ordii ste system in the [-plane, showing every fifth value. (6) The co-ordinate 
system of (a) transformed into the z-plane. (c )  Streamlines for the flow generated by rotor motion 
alone, showing clearly the circulatory motion. (d)  A descending stream, with of the rotor 
velocity, has been added to the flow of (c ) ;  this corresponds to an axial flow with no swirl in 
a conventional machine. (e) An ascending stream is added to the flow of (c), and the blade 
circulations are augmented. 
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hundred chosen values of 1; on the boundary. These values of z could then be used as 
starting points for integrating equation (2.1) along each of the radial lines in the c- 
plane, and the map of all the chosen values of c onto the z-plane found. The method of 
integration used for both of the preceding steps was that of taking the derivative 
midway between two adjacent points in the c-plane as an approximation to the gradi- 
ent of the chord joining the points, except at A ,  and A,  in figure 2 where a local 
approximation is needed to calculate adjacent points on the boundary. The results of 
this numerical mapping are shown in figure 3 (b )  which gives the transformation into 
the z-plane of the co-ordinates shown in figure 3 (a)  in the [-plane. 

Once corresponding values of x and 5 are known, it is straightforward to calculate 
the value of the stream function $ = Im ( w )  from equation (2.10) at each position for 
any required flow condition. These values were then fed to a contour plotting routine, 
along with the set of z or c values, and the streamlines in the corresponding plane were 

Figure 3 ( c )  gives the streamlines in the absence of any external flow or net circula- 
tion, and shows clearly the circulation developed around the rotor leading edge, and 
in the opposite direction around the stator. When an external stream approaches 
vertically from above with one quarter of the rotor’s velocity, the streamlines are as 
shown in figure 3 (d). The circulation on the rotor is partly cancelled by the streaming 
around the body, but some remains. This has been established by a procedure to be 
described later in this section. If the external flow approaches instead from vertically 
below the circulation is enhanced. The streamlines for this flow are shown in figure 
3(e). There are now two saddle-points in the flow away from the boundary. 

The complex potential [equation (2. lo)] also contains sufficient information to 
work out all the pressure distributions, but an evaluation of the overall lift generating 
performance may be obtained more directly from consideration of the blade circula- 
tions. We consider the case where there is no external stream, and the flow is generated 
solely by the rotor motion. We take also zero total circulation, corresponding to 
starting the motion from rest in a stationary fluid. Under these conditions, the circula- 
tions generated on the rotor and stator will be equal and opposite. 

The velocity is the gradient of the velocity potential, so the circulation round a 
curve is the change in the potential going once round the curve. The circulation on the 
rotor is therefore the change in the potential across the trailing edge 

output. 

(2.11) 

taking an anti-clockwise circulation in figure 1 as positive. Thus from equation (2.10) 

(2.12) 

This equation gives the circulation on the rotor at  any time when the blades are in 
contact. What happens when the blades are not in contact? We know from Kelvin’s 
circulation theorem that vorticity is conserved in incompressible inviscid two- 
dimensional flow, and it follows that the circulation on either blade cannot change 
once they are separated. Thus the circulations carried by the blades between contacts 
are determined entirely by the conditions around the blades a t  the time of separation. 
For our calculations we take the circulation after separation to be equal to that on the 
blade immediately prior to separation; we justify this in Q 3. 
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At the moment of separation the geometry is determined by the angle of incidence 
of the rotor, the ratio of the length of the rotor to that of the stator, and a scale factor. 
The circulation on the rotor may be compared with the Kutts circulation at  the same 
angle of incidence, and the ratio will depend only on the first two factors above. It may 
be calculated as follows. 

At separation A and F coincide, so 6, = and equation (2.2) reduces to 

(2.13) 
a 
n - ( & z - & z l ) + ~ b - l  = O* 

Since the transformed vertices are on the unit circle we may write 

6 = exp (ivb), 6, = exp ( i v u ) ,  6, = exp ( i7az ) ,  (2.14) 

whereupon equation (2.13) becomes two real equations 

a 
- (COS ?al - cos Ta,) + cos v b  - 1 = 0, n 

a 
7r 
- (sin qu, - sin vU,) + sin Tb = 0. 

(2.15) 

We write equation (2.15) in terms of the half angles, and the requirement that the 
transformed vertices are in the correct sequence round the unit circle leads to 

and that either 
va, - va, = 2 sin-l ((n/a) sin Bqb) 

Or (2.16) 
v a l - v a z  = 2{n- s i r 1  ((nla) sin 4 ~ ~ ) ) .  

Equations (2.16) have valid solutions only when 0 < qb < 2sin-l(a/n) and when 

On the unit circle 6 = eiv we may write equation (2.1) in terms of the half angles: 

va,+TaB = q b  

this is satisfied they yield two possible solutions for ra, and ya,. 

(2.17) 

where 

which is real. Equation (2.17) may be integrated numerically using values for qa,, ?la, 
and vb found as described above to give the rotor and stator lengths. The circulation 
may be found from equation (2.12) and compared with the Kutta circulation. The 
results of these calculations are shown in figure 4, which gives the ratio of the inter- 
action circulation to the Kutta circulation against the ratio of the rotor length to the 
stator length for various values of a, the rotor angle of incidence. 

Figure 5 gives the rotor lift coefficient against angle of incidence for various ratios of 
rotor to stator length near unity, and also, for comparison, the Kutta lift coefficient. 

Although it was found necessary to use a computer to integrate equation (2.17) for 
general cases, the asymptotic behaviour of the ratio of circulations shown in figure 6 
may be calculated for ratios of blade lengths either much greater or much less than 
unity, as may the rate of increase of lift coefficient with angle of incidence in figure 
5 when the angle of incidence is near zero. 

K = 4K exp (@{[a,,- ~ a , ]  a/n + Tb}), 
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FIGURE 4. The results of theoretical calculations. The ratio of the circulation r imparted by the 
interaction to that K ,  imposed by the Kutta condition against the ratio of the rotor length 1, to 
the stator length I, for various rotor angles of incidence a,  with the asymptotic values for a = 0" or 
90" and & / 1 8  S 1 or lr / l ,  < 1 shown dotted, 

t' I ,  11, = 5 

0" 20" 40° 80' 

FIGURE 5. The results of theoretical calculations. The rotor lift coefficient C; generated by the 
interaction is plotted against the rotor angle of incidence a for various ratios of rotor length I, to the 
stator length I , .  The lift coefficient resulting from application of the Kuttrt. condition in the absence 
of the stator is also shown. 
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FIGURE 6. I(a) as defined by equation (2.29) is shown for values of a from 0" to 180°, together with 
{2asin u I(u)}-l  (broken line) and {2azI(a)}-* (dotted). These last two curves represent the dl 
dependence of the asymptotes given by equations (2.28~~) and (2 .28b) .  

When the rotor is much smaller than the stator, equations (2.16) reduce to 

"la, +"lo, = "lby 

"lal - "la, = (zr/cc) "lb, 

whereas when the stator is much larger than the rotor they become 

(2.18 a) 

(2.18b) 

In  either case the length of the larger blade is approximately independent of the length 
of the smaller blade, and may be found by setting "la, = yaa = 0 in equation (2.17). Then 

dz/dy = K'i  sin 7 (2.19) 

and so the length of the larger blade is 

f : $ d v  = K'. 

The length of the smaller blade may be found by approximating (2.17) to 

(2.20) 

(2.21) 

which is valid for a small rotor over the range of integration necessary to find the rotor 
length: 

(2.22) 

and a similar expression may be found for the stator length when it is much smaller 

than the rotor. Equations (2.18a, b )  may be used to find the dependence in equation 
(2.22) of 1, on r b ,  and this may be written as 

(2.23) 
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where 2t = (1  - n/a) and 2u = (1 i- n-/a), or more compactly as 

1, = gK?/$I(a). (2.24) 

Equation (2.12) gives the interaction-induced circulation, which may be approxi- 
mated when either blade is small. For the small rotor 

arg K = 0 

argK = a-qb. 
and for the small stator 

So from equation (2.12) for the small rotor 

vK’ n - 4 ,T& 

and similarly for the small stator 

(2.25a) 

(2.25 b )  

( 2.26 a )  

(2.26 b )  

In all cases the Kutta circulation used for comparison is given by 

Kc = nl, v sin a. (2.27) 

We may now establish the asymptotic forms of the curves in figure 6. For 1, < 1, 

r / K C  = (2a sin a I(a)}-l, ( 2 . 2 8 ~ )  

which depends only on an a, and for 1,B 1, using equations (2.20), (2.24), (2.263) and 
(2.27) 

(2.28 b )  

These results give the gradients shown in figure 6 for the two asymptotic conditions. 

from equations (2.24), ( 2 . 2 6 ~ )  and (2.27) 

1 
a 

r/Kc = - ~ 2 ( 1 ~ 1 ~ 1 ( 4 ~ - 4 .  

The values may be confirmed if the function 

(2.29) 

where 
t = *(l-n/a) ,  u = *(1+7r/a) 

is known. It can be shown that 

where 

is the Gauss hypergeometric function (see Abramowitz & Stegun 1964, chapter 15). A 
particular case that may be calculated is the limit as a, the rotor angle of incidence, 
tends to zero. From equation (2.29) we obtain 

I ( 0 )  = &7r”/.2 (2.31) 

2F1(a, b ;  c; 4 

1s F L M  94 
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F/K, -+ 4/7r2, (2.32 a) 

(2 .32 6 )  

In  general the evaluation of I (a )  must be done numerically, and the results are 
shown in figure 6, along with the corresponding asymptotic values from equation 
( 2 . 2 8 a ) ,  and the intersection with the log(l,./l,) = 0 axis of equation ( 2 . 2 8 b ) .  The 
asymptotes for a = 0" and 90" are shown in figure 4. The closeness of these asymptotes 
reflects the nearly constant nature of a sin a f(a) and a21(a) as shown in figure 6. The 
lift coefficient in figure 5 is related to the blade circulation by 

c, = 2 r p ,  (2.33) 

and the dependence on a may be found for small a when the rotor and stator lengths 
are equaI. When 1, = 1,. 

T b  = 2 a / n  (2.34) 
and so from equations (2.16) 

and (2.35) 
ra2 = - n / 2  + a/n. 

From equation ( 2 . 1 2 )  using the definition of h" in equation ( 2 . 1 7 )  

Ta, = n/2 + a/n 

or in view of equations ( 2 . 3 4 )  and ( 2 . 3 5 )  

For a near zero and lr = 1, 

and so equation ( 2 . 3 3 )  becomes 

I? = vK'sin3a. 

1, = I ,  = $K' 

CL = 2 a .  

(2.36) 

(2.37) 

(2.38) 

(2.39) 

This is in agreement with the initial gradient of the appropriate curve in figure 5. 
When the rotor and stator lengths are not equal the calculation is more difficult. 
The model is symmetrical in a = 0 ,  so qb/a will be stationary with respect to small 
variations in a near zero, and the following may be shown : 

if 

and 1Jls is denoted by R: 
for a Q 1 and R < 1, 

and 

for a Q I and R 3 1 

ra = 2ka/7r,  

1 - ( 1  - P ) t  
l + ( f  -k2)4 

R =  

4k sin-l k c -  - n[l - (1 - kZ)t] a;  

(2.40) 

I + (1 - k2)t 
1 - (1  - k2)6 

R =  (2.41) 
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and 
4k(n - s i r 1  k) c -  

L -  n [ l + ( l - k z ) q a .  

Hence, the initial gradients of all the curves in figure 5 may be found. 
The circulations developed by this interaction are actually slightly lower than those 

imposed by the Kutta condition at the same incidence, but they are of the same order 
of magnitude, and the Kutta circulation is not attainable a t  the higher incidences 
owing to flow separation. Encarsia formosa uses the interaction to generate circula- 
tions twice as high as those generated by hovering insects which rely on the Kutta 
condition, and it therefore seems reasonable to expect that higher circulations are 
possible with our machine also. What can be achieved in practice will be established 
only by experiment. 

The geometry required for the interaction to generate circulation is not too different 
from conventional aerofoil designs, and a hybrid machine is possible. The subject of our 
experiment was such a machine. Moving the rotor blades close to the stator blades in a 
conventional machine would result in a similar interaction to that presented here, 
though the approximate rotor-stator seal would exist only for a very short time. The 
circulation on the blades could be sustained by the interaction to extend stall-free 
operation under heavy loading. 

We have now established that our model geometry will generate a circulation of 
sufficient magnitude to be of interest, and we can calculate the effect of any of the 
external flow parameters. We have shown that the interaction principle employed 
by the wasp may be built into different geometries more suitable for engineering 
applications, and we suggest that there will be such applications where blading 
designed to use interactions constructively will give a higher performance than con- 
ventional designs. 

3. Blade contact and separation 
An unusual feature of the flow we are analysing here is that the boundary is not 

topologically continuous with respect to time. Before the blades touch there are two 
separate rigid bodies in relative motion, then there is one deforming body, and after 
separation two rigid bodies again. Unfortunately we have found no way of obtaining 
an exact solution to the problem when the bodies are not in contact, but certain 
properties of the flows may be deduced from the laws of potential flow. 

We shall demonstrate here that the assumption of the last section, namely that the 
rotor circulation is the same immediately after separation as it was just before, is a 
reasonable one. But first let us consider what happens when a rotor approaches a 
stator. 

Suppose that neither blade has any circulation on it, so the system may have been 
started from rest. While the blades are still some distance apart their flow fields will be 
approximately independent, and in the rest frame of the stator the total flow pattern 
will resemble figure 7 ( a ) .  As the rotor approaches the stator its flow field will be 
deformed by the presence of the stator. The circulation on each blade cannot change, 
however, so a very high fluid velocity must be generated through the gap in the final 
moments before contact. The streamline pattern will be similar to that in figure 7 (b ) .  
At contact the flow must be suddenly modified to that in figure 7 (c)  in which there is no 

18-2 
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FIQURE 7. (a) The flow generated by a moving rotor distant from the stator with no circulation on 
either blade. (6 )  The flow of (a) modified by the proximity of the stator. There is still n o  circulation 
on either blade. (c )  The flow after blade contact showing the circulations generated on the blades. 

F X A 

FIUURE 8. The modification for the continuity argument. A small horizontal section A X  is added 
to the trailing edge of the rotor to move the pressure singularity a t  A away from the gap. The flow 
local to the initial, vanishingly small gap is then that through an aperture in an infinite plane 
boundary with the appropriate velocities parallel to the plane prescribed. 

flow between the blades. Accompanying this sudden change in the flow pattern is the 
generation of non-zero circulation on each of the blades, which may be calculated by 
the methods of the last section. 

Thus we see that at blade contact the effective blade circulations are suddenly 
changed as the irrotational flow of fluid between the blades is cut off. We now consider 
what happens to the blade circulations when they separate. 

Once the blades are separated, by however small a gap, the conditions for Kelvin’s 
circulation theorem are satisfied (Batchelor 1967, $5.2); but at  the instant of separa- 
tion they are not. In  particular, the pressure is not single valued a t  the trailing edge of 
the rotor. The flow will therefore change instantaneously when a gap appears. 

Not only is the pressure not single valued at  the rotor trailing edge, but also it is 
singular on the lower side, as is always the case for flow round a sharp corner. To 
simplify analysis of the effect of a small gap on the flow, we move the gap away from the 
corner by adding a small horizontal section to the rotor at  the trailing edge (figure 8). 
The flow near the vanishingly small gap is then approximately the flow through an 
aperture in a plane boundary with different fluid velocities parallel to the plane on 
either side. An analysis of the flow will show us how the circulation on each aerofoil is 
determined a t  the instant of separation by the asymptotic small gap local flow; once 
so determined it is preserved in accordance with Kelvin’s theorem. 

The complex potential for such a flow is 

w = *(q+u2)z+*(u,- U2)(22-62)~+Alog[z+(z2-&2)q ,  ( 3 4  

taking cuts in the x-plane from - co to - 6 and from 6 to + 00 along the real axis. This 
gives the potential flow caused by a gap of width 28 in an infinite plane boundary 
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(C) 

FIGURE 9. The flow near an aperture in a plane boundary: (a) with equal and opposite streams 
either side and no net flux through the aperture; (b)  with stagnant fluid to one side and no net flux 
through the aperture; ( c )  with fluid of different velocities but in the same direction on either side, 
and no net flow through the aperture; ( d )  the flow of ( c )  modified by the addition of a flux through 
the aperture to remove the singularity on the upstream edge. 

between a stream of velocity U, above the plane and a stream of velocity U, below the 
plane. Note that the constant A multiplying the only term which leads to a net flow 
through the gap is so far undetermined. 

Each of the terms in equation (3.1) satisfies the boundary conditions on the plane 
exactly, and each is therefore a possible flow with this boundary. The first term is a 
uniform flow parallel to the boundary, and is not influenced by the presence of the gap. 
The second term describes the flow when the streams either side of the boundary are 
equal in magnitude but opposite in direction. A set of streamlines for such a flow is 
shown in figure 9(a). There is a stagnation point in the middle of the gap, and the 
fluxes through the gap either side of this point are equal and opposite. 

These first two flows may be combined to produce any pair of stream velocities 
required. Figure 9 ( b )  shows the streamlines for flow past a gap with stagnant fluid on 
the other side, while figure 9 ( c )  has different velocities both in the same direction either 
side. All of these flows satisfy the boundary conditions and equations of motion 
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without the third term in equation (3.1), so where does this term come in? If we look 
again at figure 9(c) we see that there are two symmetrically positioned stagnation 
points near the gap, and singularities a t  the edgesof the gap.The flowoff the upstream 
edge of the gap is similar to that at  the trailing edge of a flat-plate aerofoil when the 
Kutta condition is not satisfied. For such an aerofoil, the attached circulation maybe 
modified by vortex shedding to remove the singularity at the trailing edge. Similarly 
in the case of the flow past an aperture, we suggest that the physics of the flow will 
cause a flux through the gap sufficient to remove the singularity on the upstream 
plane. The flow will then leave this plane tangentially. When this condition is satisfied, 
which requires that A = - @(U1 - U,) in equation (3. l ) ,  the flow in figure 9 (c) becomes 
that in figure 9 ( d ) .  

There will still be a singularity on the edge of the downstream plane, just as there is 
always a singularity on the leading edge of the flat-plate aerofoil. 

The above argument will only apply if the flow is in the same direction either side of 
the gap. If the flow is in opposite directions, then we cannot say that one plane is 
upstream and the other downstream of the gap. It could be argued that the flux 
through the gap is likely to be from the high pressure side to the low pressure side, 
which allows the removal of the singularity on the plane upstream of the gap with 
respect to the faster-moving fluid. The opposite flux would remove the singularity on 
the other plane. It seems reasonable to suggest that, whatever value the flux takes in 
practice, it  will be of magnitude no greater than these limiting values, so, in equation 
(3JL 

S.  B. Furber and J .  E .  Ffowcs Williams 

I4 l t~ l~ , -~ , l .  (3.2) 

The flux through the gap may be calculated from the complex potential, and is 
found to be AT. This is consistent with the observation that in the far field to one side 
of the gap the term representing the flux approximates to a simple source of strength 
AT placed next to a plane boundary, and in the far field to the other side of the gap it 
approximates to a simple sink of equal strength. 

We have now found a description of the flow that will result when a gap appears in a 
plane boundary between two streams of differing velocities. As would be expected, the 
flow velocities are only changed significantly within a region of the same order of 
linear dimension as the gap, though as shown in figure 9 ( d )  the streamlines may be 
displaced by a distance of the same scale as the gap everywhere downstream of the 
gap. 

To estimate the effect of the appearance of the gap on the rotor circulation we must 
see whether letting the size of the gap tend to zero results in the limit in the same flow 
as is generated when there is no gap. Equation (3.1) shows that this is the case if we 
include the fact that A is O(6). Can the very small disturbance to the flow generated by 
an infinitesimal gap cause a finite change in the rotor circulation? Consider the con- 
tribution to the circulation from the section of the half-plane between (6 ,O) and (xl, 0)  
on the positive real axis. The path for calculating the contribution is taken from 
(xl, i s )  along just above the real axis to the origin and then back below the real axis to 
(x,, -is). With no gap the integral of the velocity along the path is x,(U, - Ul). With 
gap of width 26 it  becomes (U, - U,) (xt - S2)1 - A  log [S-l(x, + (xl - S2)4)] ; letting 
S+ 0 with A = O(S) gives the same result. It follows that the appearance of an infini- 
tesimal gap does not affect the rotor circulation, and thereafter Kelvin’s circulation 
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theorem ensures that no change can take place until the rotor makes contact with a 
subsequent stator. 

I t  remains only to note that the addition of the small horizontal section to the rotor 
(AX in figure 8) has a small effect on the rotor circulation, in the sense that the change 
tends to zero with the size of the additional section. Thus it is reasonable to base our 
calculations on the original model as shown in figure I and to take the circulations 
immediately after blade separation to be the same as those just before. 

4. Interacting cascades 
We now know that a pair of interacting aerofoils can generate circulations com- 

parable to those resulting from application of the Kutta condition. We wish to build 
the interaction into a turbomachinery stage, and estimate the performance in com- 
parison with a conventional stage. The problem arises here that there are a large 
number of different parameters which will affect the results of the calculation. We 
have therefore chosen to base our calculations on a geometry close to that used in the 
experiments (see figure 10). 

The stage used in the following calculations has rotor and stator blades which are 
flat plates of equal chord, with the blade spacing also equal to the chord. The conven- 
tional two-dimensional cascade representation is used with infinite blade sets along 
the x axis, and flow down the y axis representing axial inflow with no swirl. The blade 
staggers are 45" and 30" for the rotor and stator respectively. For the conventional 
cascade performance we have used the results of Weinig (1935) for the exact potential 
flow through a cascade of flat plates, the relevant sections of which are summarized 
by Horlock (1958). The rotor and stator are treated separately, though the entry 
conditions at the stator are of course determined by the flow deflexion through the 
rotor. 

The interacting cascade results were obtained by treating each rotor-stator inter- 
action in isolation. The blade circulations were calculated by methods outlined earlier, 
and the rotor blade lift was assumed to be that resulting from the movement of this 
circulation relative to the inflow. The rotor circulation also causes a deflexion of the 
main stream which will then generate lift on the stator. Since the rotor and stator 
circulations are equal, the outflow from the stator will be axial, a t  least outside the 
disturbed area. 

It is worth noting here that, since the rotor and stator circulations are equal but 
opposite in sign, when the blades touch subsequently the total circulation on each 
rotor-stator pair will be zero, as we assumed for the starting condition, so the solution 
does represent the steady state. 

In any machine working in a real fluid, the generation of excess circulation over that 
required by the Kutta condition would result in vortex shedding and gradual return 
to the Kutta level. Each interaction would then return the circulations to their high 
value, so the mean circulation would be above the Kutta value. Thus we should expect 
a real machine to work somewhere between these two possible conditions; the calcula- 
tion of the actual level is beyond the scope of this paper. It is expected that an approach 
like that of Kemp & Sears (1953) would give an approximation to the mean flow 
conditions. 

The results of these calculations are presented in figures I1 and 12. Figure 11 gives 
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I. i 

FIGURE 10. The geometry used for the stage calculations. 
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1 

dJ 

0 

- I  

FIUURE 11. The overall performance of a stage operating under Kutta or Weis-Fogh conditions. 
The stage loading (@ = Ap/ipvZ) is shown against flow coefficient (9 = V / v ) .  

I 
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FIGURE 12. The rotor and stator stage loadings (+ = A p / i p v 2 )  for flow coefficients (9 = V / v )  
between 0 and 1. The lift coefficients are shown for the Kutta blading to indicate where stall may 
be expected. 

the stage loading (Ap/$pv2, where Ap is the pressure rise and v the rotor velocity) 
against the flow coefficient (V /v ,  V being the axial fluid velocity). Figure 12 breaks 
the total stage loading down into separate rotor and stator loadings. We have also 
marked on figure 12 the lift coefficients of the conventional rotor and stator at various 
loading conditions, to give some impression of where stall will occur, since our calcula- 
tions do not allow for flow separation. The results show that the interaction blading 
has a very similar performance to the conventional blading a t  the peak operating 
condition, but the stage pressure rise reduces much more slowly as the flow increases. 
Thus the interaction stage may be expected to  produce useful pressure rises over a 
significantly wider range of operating conditions. The relative peak performance may 
vary from one geometry to another, but in the case considered here the interaction 
stage appears to produce a somewhat higher pressure rise. 

It should be said here that our potential flow models do not enable us to make any 
estimate of the relative efficiencies of the two stages, and for many applications the 
efficiency is a t  least as important as the stage pressure rise. Realistic estimates of the 
effect of the interaction on efficiency are most easily found by experiment, and we shall 
now describe the results of our initial tests. 

The experiments were performed on a small closed-cycle water rig a t  the Whittle 
Laboratory, Cambridge. The working section of the apparatus was modified to allow 
the axial separation of a conventional stage to be vaned by means of metal shims. The 
rig allowed for the measurement of static pressure rise and overall efficiency of the 
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Rotor chord 20 mm 
profile 1OC4 on circular arc 
camber 30' 
stagger 4 5 O  

Stator chord 20 mm 
profile 1Oc4 on circular arc 
camber 30" 
stagger 30" 

hub diameter 66 mm 
tip diameter 88 mm 
tip clearmce 0.1 mm nominal 

Both blade sets material polycarbonate 

Rotor- stator clearances 
Flow rates 
Rotor speed 2500 r.p.m. 

0.1 to 5 mm 
5 to 13 kg s-1 

TABLE 1. Details of tested stage. 

0.3 

I I I 1 

13 

Flow rate (kgs-') 

FIUURE 13. The stage pressure rise. Separation (mm): x ,0-1; n ,0 .3;  0, 2.5. 

stage. The blades had a chord of 20 mm, and the rotor-stator separation was varied 
between 5 mm, represent,ing a conventional arrangement, and around 0.1 mm, which 
was as close to contact as the equipment would allow. Further blading details are given 
in table 1. 

The results of the tests are shown in figures 13 and 14. Figure 13 shows the overall 
stage pressure rise, which demonstrates an increase in pressure rise with decreasing 
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Flow rate (kg s-’) 

FIGURE 14. The stage effioiency. The symbols ere the same es in figure 13. 

separation of 5 to 10 yo both above and below the stalling point. The efficiency (figure 
14) also shows an improvement, but to a lesser extent. Thus our calculations suggest 
that there may be significant performance advantages in using a high interaction 
stage in a turbo-machine, and our initial experiments have demonstrated an increase 
in stage loading with no increase in losses when the rotor-stator interaction is 
increased. 

It is worth commenting here that performance improvements have been observed 
in several jet engine axial compressors as a result of reducing the axial separation of 
blades. Miller (1971) reviews the relevant engine test results. The clearances in these 
tests are not sufficiently small to result in an approximate rotor-stator seal a t  any 
instant, but viscous effects must ensure a certain degree of blocking with reduced 
separation, which will in turn lead to an interaction similar to that presented earlier 
in this paper. 

5. Conclusion 
Recent studies of animal hovering motions have revealed a method of lift generation 

not previously considered by aerodynamicists. The insects that use the process achieve 
a lift coefficient double that achieved by animals that use a conventional vortex- 
shedding process. We have attempted to demonstrate that the principle of the new 
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(to aerodynamicists, but not insects !) process may have engineering applications. 
Furthermore, being radically different in principle from that used in conventional 
aerodynamics, it  might well offer some performance advantage. 

We have suggested a design for an axial flow compressor using the new process, and 
shown how a simple model of this design may be analysed mathematically. The results 
show that the effect is strong enough to be of interest to designers of machines. 

The effect of varying levels of interaction in axial flow stages has been investigated 
experimentally. The results show a measurable improvement in performance as the 
interaction is increased, and we suggest that the improvement may well be due to  the 
effect illustrated by the theoretical model. 

Weis-Fogh (1973) and Lighthill (1973) have explained the novel mechanism used 
by the insect to enhance its aerodynamic performance, and much interest has been 
shown by aerodynamicists in their work. We suggest that this interest should now be 
extended to a serious consideration of the application of the mechanism to the solution 
of engineering problems. 

One of us (SBF) gratefully acknowledges the support of an SRC research student- 
ship and the opportunities afforded by the Rolls-Royce Research Fellowship at 
Emmanuel College, Cambridge. 
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